

Please write clearly ir	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level **MATHEMATICS**

Paper 1

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet
- You do not necessarily need to use all the space provided.

Question Mark 1 2 3 4 5 6 7 8 9 9	For Examiner's Use		
2 3 4 5 6 7 8	Question	Mark	
3 4 5 6 7 8	1		
4 5 6 7 8	2		
5 6 7 8	3		
6 7 8	4		
7 8	5		
8	6		
	7		
9	8		
	9		
10	10		
11	11		
12	12		
13	13		
14	14		
15	15		
TOTAL	TOTAL		

Answer all questions in the spaces provided.

1 A curve is defined by the parametric equations

$$x = \cos \theta$$
 and $y = \sin \theta$ where $0 \le \theta \le 2\pi$

Which of the options shown below is a Cartesian equation for this curve?

Circle your answer.

[1 mark]

$$\frac{y}{x} = \tan \theta$$

$$x^2 - y^2 = 1$$

$$x^2y^2 = 1$$

2 A periodic sequence is defined by

$$U_n = (-1)^n$$

State the period of the sequence.

Circle your answer.

[1 mark]

0

1

3 The curve

$$y = \log_4 x$$

is transformed by a stretch, scale factor 2, parallel to the y-axis.

State the equation of the curve after it has been transformed.

Circle your answer.

[1 mark]

$$y = \frac{1}{2} \log_4 x$$

$$y = \frac{1}{2}\log_4 x$$
 $y = 2\log_4 x$ $y = \log_4 2x$ $y = \log_8 x$

$$y = \log_4 2x$$

$$v = \log_{\mathbf{R}} x$$

4 The graph of

$$y = f(x)$$

where

$$f(x) = ax^2 + bx + c$$

is shown in Figure 1.

Figure 1

Which of the following shows the graph of y = f'(x)? Tick (✓) one box. [1 mark]

5 Find an equation of the tangent to the curve	Э
--	---

$$y = (x - 2)^4$$

at the point where x = 0

[3 marks]

$$\frac{dy = 4(x-2)^3}{dx} = \frac{dy = -32}{dx}$$

16 = C

6 (a) Find the first two terms, in ascending powers of x, of the binomial expansion of

$$\left(1-\frac{x}{2}\right)^{\frac{1}{2}}$$

[2 marks]

$$= \left| + \frac{1}{2} \left(-\frac{2}{2} \right) \right| = \left| -\frac{2}{4} \right|$$

6 (b) Hence, for small values of x, show that

$$\sin 4x + \sqrt{\cos x} \approx A + Bx + Cx^2$$

where A, B and C are constants to be found.

[4 marks]

$$4x+\sqrt{1-x^2}$$
 from part a sub x^2 instance x

$$= \frac{40c + 1 - 3c^2}{4}$$

$$\frac{4x+\sqrt{1-x^2}}{2} + 4x-x^2$$

8 The lines L_1 and L_2 are parallel.

 L_1 has equation

$$5x + 3y = 15$$

and L_2 has equation

$$5x + 3y = 83$$

 L_1 intersects the *y*-axis at the point *P*.

The point Q is the point on L_2 closest to P, as shown in the diagram.

8 (a) (i) Find the coordinates of Q.

[5 marks]

8 (a) (ii)	Hence show that $PQ = k\sqrt{34}$, where k is an integer to be found.	
		[2 marks]
	$(0,5)(0,11)$ PQ = 10^2+6^2	
	= 136	
	PQ = 2/34	

8 (b)	A circle, C , has centre $(a, -17)$.	
	L_1 and L_2 are both tangents to C .	
8 (b) (i)	Find a.	[2 marks]
	5x+3y=83 L2 at $y=-17$ $5x-51=83$	
5x + 3y = 15	50c = 134	
<u>66</u> ,-17	x = 134	
	Li at y=-17 5x-51=15	
	<u> </u>	
	X= 6b	
	$\frac{ma point of (6b, -17)}{5} and (134, -17)$	
	= (20,-17) = (20,-17) X= 20	
8 (b) (ii)	Find the equation of C.	[2 marks]
	as shortest distance PQ = 534 radius = 534	
	equotion of circle $(x-20)^2+(y+17)^2=34$	
	equice (1-25) +(9+11) - 34	

9	The first three terms of an arithmetic sequence are given by	
	2x + 5 $5x + 1$ $6x + 7$	
9 (a)	Show that $x = 5$ is the only value which gives an arithmetic sequence.	[3 marks]
	5x+1-(2x+5)=6x+7-(5x+1)	
	32-4:2+6	
	200 = 10	
	∞ 25	
9 (b) (i)	Write down the value of the first term of the sequence.	[1 mark]
	2(5) +5 = 15	
9 (b) (ii)	Find the value of the common difference of the sequence.	[1 mark]
	15, 26, 37 d=11	
		

9 (c)	The sum of the first N terms of the arithmetic sequence is \mathcal{S}_N where		
	$S_N < 100000$		
	$S_{N+1} > 100000$		
	Find the value of N .	[4 marks]	
	$\frac{S_{n} = \frac{1}{2} \left(2\alpha + 4(n-1) \right)}{2}$		
	$\frac{n}{2} \left(\frac{30 + 11(n-1)}{2} \right) \leq 100,000$		
	<u>2 (19+110) < 100,000</u>		
	11n2+ 19n-100,000 CO		
	11/2+19/1-200,000 <0 1=133 Sn = 98553		
	n=1314 Sn=100,031		
	N= 133		
			
			
			
			

10 The diagram shows a sector of a circle *OAB*.

The point C lies on OB such that AC is perpendicular to OB.

Angle AOB is θ radians.

10 (a) Given the area of the triangle OAC is half the area of the sector OAB, show that

$$\theta = \sin 2\theta$$

[4 marks]

Area Sector =
$$\frac{0}{2\pi} \times \pi \Gamma^2 = \frac{0r^2}{2}$$

Area triangle =
$$\frac{1}{2}$$
 rsn0 x ros0
$$= \frac{1}{2}$$
 sn0 cos0 2 sn0 cos0 = sn20
$$= \frac{r^2}{4}$$

$$\frac{2 \times \Gamma^2 \sin 2\theta}{4} = \frac{\theta \Gamma^2}{2}$$

$$\frac{\Gamma^2 \operatorname{sn20} = \Gamma^2 O}{2} = \frac{\operatorname{sn20} = O}{2}$$

10 (b) Use a suitable change of sign to show that a solution to the equation

$$\theta = \sin 2\theta$$

lies in the interval given by $\theta \in \left[\frac{\pi}{5}, \frac{2\pi}{5}\right]$

[2 marks]

$$\frac{0:\pi}{5} = \frac{\pi}{5} = -0.3227$$

Question 10 continues on the next page

10 (c) The Newton-Raphson method is used to find an approximate solution to the equation

$$\theta = \sin 2\theta$$

10 (c) (i) Using $\theta_1 = \frac{\pi}{5}$ as a first approximation for θ apply the Newton-Raphson method twice to find the value of θ_3

Give your answer to three decimal places.

[3 marks]

$$\frac{2c_{n+1} = 2c_n - (2c_n - 5in 2c_n)}{1 \cdot 3c_n \cdot 3c_n} \frac{d(0 - 5in 2c_n)}{d0}$$

-1-20052D

$$O_1 = \pi$$
 $O_2 = 1.473257.... O_3 1.04324....$

03 = 1.041 (300)

10 (c) (ii) Explain how a more accurate approximation for θ can be found using the Newton-Raphson method.

[1 mark]

accorate the approximations become

10 (c) (iii)	Explain why using $\theta_1 = \frac{\pi}{6}$ as a first approximation in the Newton-Raphson method does not lead to a solution for θ .		
	[2 marks]		
	0=77 cos 20 = 1 which would give a denominator of 0 which would give an undefined		
	denominator of a which would give an undefined		
	solution		

Turn over for the next question

The polynomial p(x) is given by

$$p(x) = x^3 + (b+2)x^2 + 2(b+2)x + 8$$

where b is a constant.

11 (a) Use the factor theorem to prove that (x + 2) is a factor of p(x) for all values of b.

[3 marks]

1 x+2 15 a foctor f(-2) =0

C(-2) = -8 + 4(b+2) -4(b+2)+8

= 0 for all values of b

11 (b) The graph of y = p(x) meets the x-axis at exactly two points.

11 (b) (i) Sketch a possible graph of y = p(x)

[3 marks]

11 (b) (ii) Given p(x) can be written as

$$p(x) = (x+2)(x^2 + bx + 4)$$

find the value of b.

Fully justify your answer.

[4 marks]

as there is a repeated most either (20+2) is a repeated
root so $x = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$
4-2b+4=0 b=4
or x2+bx+4 is a square no
b2-4ac=0
b ² -16=0
b2-16 b=+4 However is b=4 this gives only one root to
the above $(x^2+4x+4)=(x+2)^3$
$= \sum_{x \in \mathbb{Z}} (x^2 - 4x + 4)$
$(x+3)(x-3)_{5}$
Here b=-4

Turn over for the next question

12 (a)	A geometric sequence has first term 1 and common ratio $\frac{1}{2}$	
12 (a) (i)	Find the sum to infinity of the sequence.	[2 marks]
	a=1 r=2 Sx= 9 = 1 = 2	[2 marks]
12 (a) (ii)	Hence, or otherwise, evaluate	
	$\sum_{n=1}^{\infty} (\sin 30^{\circ})^n$	
		[2 marks]
	Sn 30= \frac{1}{2}, +\frac{1}{4} + \frac{1}{2} + \frac{1}{	
	= (1+1++1+2) -1	
	= 1	

12 (b) Find the smallest positive exact value of θ , in radians, which satisfies the equation

$$\sum_{n=0}^{\infty} (\cos \theta)^n = 2 - \sqrt{2}$$

[4 marks]

2+5=2-20

$$r = -\frac{5}{2}$$

$$\frac{\cos\left(\pi - \pi\right) : -\sqrt{2}}{4}$$

Turn over for the next question

Figure 2 shows the approximate shape of the vertical cross section of the entrance to a cave. The cave has a horizontal floor.

The entrance to the cave joins the floor at the points O and P.

Garry models the shape of the cross section of the entrance to the cave using the equation

$$x^2 + y^2 = a\sqrt{x} - y$$
 (0,0) (16,0)

where a is a constant, and x and y are the horizontal and vertical distances respectively, in metres, measured from O.

13 (a) The distance *OP* is 16 metres.

at (160) 162 - auti

Find the value of a that Garry should use in the model.

[2 marks]

-10 10 1	10 : 10 110		
	256 = 4a	Q=64L	
(If the oxis	isn't there is w	oud just involve a sinft	
along the or	c axis so a w	would be the same	

13 (b) Show that the maximum height of the cave above *OP* is approximately 10.5 metres.

[6 marks]

$$x^2 + y^2 = a\sqrt{x} - y$$

 $\frac{\pi^2 - 64\pi + y^2 + y = 0}{d\pi} = \frac{\pi \times \sqrt{2} + y^2 + y = 0}{\pi \times \sqrt{2}} = \frac{\pi \times \sqrt{2} + y = 0}{\pi \times \sqrt{2}} =$

 $\frac{-1}{20c - 32xc} + \frac{2y}{4} + \frac{dy}{dc} = 0$

 $\frac{2y+1(dy)}{dx} = \frac{32}{5x} - \frac{2x}{x}$

 $\frac{dy}{dz} = \frac{32 - 2zc fz}{fz} = \frac{32 - 2zc fz}{fz}$

24+1

when

32-2x Jac=0

obc

16 = 255

16 = 2

162 = E3

 $256 = 20^3$

 $4^{3}4 = \infty$ (6.3496)

6.3496² + y² = 64, 16.3496 - y

 $y^2 - y = 120.9524$ y = 11.509m (-10.5 not 10)

13 (c) Suggest one limitation of the model Garry has used.

[1 mark]

The entrance is writely to be perfectly

smooth

Turn over ▶

14 The region bounded by the curve

$$y = (2x - 8) \ln x$$

and the *x*-axis is shaded in the diagram below.

14 (a) Use the trapezium rule with 5 ordinates to find an estimate for the area of the shaded region.

Give your answer correct to three significant figures.

[3 marks]

$$\frac{x=1}{(2x-8)\ln x} = 0 \quad | -2.518 \quad | -2.749 \quad | -1.768 \quad | 0$$

$$P = \frac{0.75 \int_{0.75}^{0.75} 0 + 2 \int_{0.75}^{0.75} -2.518 - 2.749 - 1.768}{2}$$

Do not write outside the box

14 (b)	Show that the	exact area	is given	bv

$$32 \ln 2 - \frac{33}{2}$$

Fully justify your answer.

$$= \left[\ln(\infty)(\infty^2 - 8\infty) - \int (\infty^2 - 8\infty) \frac{1}{2} \right]$$

$$= \left[\left(x^2 - 8x \right) \left(\ln x \right) - \int x - 8 \right]$$

$$= \frac{1}{2} \left(\frac{x^2 - 8x}{nx} \right) - \left[\frac{x^2 - 8x}{2} \right]^{\frac{1}{2}}$$

$$= \left[\frac{(x^2 - 8x)(\ln x) - x^2 + 8x}{2} \right]$$

$$\frac{1}{2} \left[-16 \ln 4 - 8 + 32 \right] - \left[-7 \times 0 - 1 + 8 \right]$$

$$= -16 \ln 4 + 24 - 15 = -32 \ln 2 + 33$$

As area cont be regative area = 32h2-33

15 (a)	Given that				
		$y = \cos$	$\sec heta$		
15 (a) (i)	Express y in terms of $\sin \theta$.				[1 mark]
	y=1 5100				
15 (a) (ii)	Hence, prove that	dv			
		$\frac{\mathrm{d}y}{\mathrm{d}\theta} = -\cos\theta$	$\operatorname{ec} heta \operatorname{cot} heta$		[3 marks]
	S1^ Ø	<u> </u>	$\sqrt{-sn0}$		
		te	de		
	dy = 0-000 dz 51120		<u>- 050 -</u> 5n20	tono	sn0
=	- Cosec O cot O				

15 (a) (iii)	Show that			
		$\frac{\sqrt{y^2 - 1}}{y} = \cos \theta$	for $0< heta<rac{\pi}{2}$	[3 marks]
	$\sqrt{\cos \cos \alpha^2 - 1}$		cosec 2 =	
	cosec 0	•		
	J cot 20	= <u>Cot</u> 0	= <u>so</u>	
	Cosech	cosec 6	cosec b	
•	cos 0 x sy	$80 = \cos \theta$	3	
	SINE			

15	(b)	(i)	Use	the	substitution
----	-----	-----	-----	-----	--------------

$$x = 2 \csc u$$

to show that

$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x \qquad \text{for } x > 2$$

can be written as

$$k \int \sin u \, du$$

where k is a constant to be found.

[6 marks]

(or = 2 cosec U	
.)	$x^2 \int x^2 - 4$	de 2 cosec u cot	
		る ひ	
<u> </u>		doc = -200secucotud	ى
	1	doc	
	4000cc2(U) 1400cc2U-	4) 4 cosec ² v - 4	
		= 2/000-1	
	1 x - 2 sosec v cox v	do = 2500+20 =	
	40sec ² u 2coxu	= 2cotu	
	,		
	$\int -1$ av =	- Snudu = -1 (snudu	
	J 4 cosec U	4	

15 (b) (ii)	Hence,	show
-------	--------	--------	------

$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \, \mathrm{d}x = \frac{\sqrt{x^2 - 4}}{4x} + c \qquad \text{for } x > 2$$

where c is a constant.

[3 marks]

$$\frac{-1}{4} \int \sin \theta \, d\theta = \frac{-1}{4} \left[-\cos \theta \right]$$

= COSU + C	2:20sec U
4	z²= 4 cosec²u
	22 - 1V

S120

	් දෙන	11-sn20	= 11-4
COSU	= J = 22-4		<u>5</u>
4	252	- J==-4	+ C
	4	420	

END OF QUESTIONS

