

Please write clearly ir	n block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		-
Candidate signature	I declare this is my own work.	- /

A-level **MATHEMATICS**

Paper 3

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet
- You do not necessarily need to use all the space provided.

For Examiner's Use			
Question	Mark		
1			
2			
2 3 4 5			
4			
5			
6 7			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
TOTAL			

Section A

Answer all questions in the spaces provided.

1 State the range of values of x for which the binomial expansion of

$$\sqrt{1-\frac{x}{4}}$$

is valid.

Circle your answer.

$$|x| < \frac{1}{4}$$

|x| < 4

$$|x| < \frac{1}{4} \qquad |x| < 1 \qquad |x| < 2$$

$$|x| < \frac{1}{4} \qquad |x| < 1$$

2 The shaded region, shown in the diagram below, is defined by

$$x^{2}-7x+7 \leq y \leq 7-2x$$

$$-\int_{Q} x^{2}-7x+7$$

Identify which of the following gives the area of the shaded region.

= \(-\pi^2 + \Spc

Tick (✓) one box.

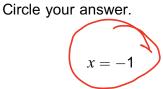
[1 mark]

$$\int (7-2x) \, dx - \int (x^2 - 7x + 7) \, dx$$

$$\int_0^5 (x^2 - 5x) \, \mathrm{d}x$$

$$\int_{0}^{5} (5x - x^2) dx$$

$$\int_0^5 (x^2 - 9x + 14) \, \mathrm{d}x$$


Turn over for the next question

$$f(x) = 2x + 1$$
 $y = 2x + 1$ $y = 2x + 1$

Solve the equation

$$f(x) = f^{-1}(x)$$

[1 mark]

$$x = 0$$

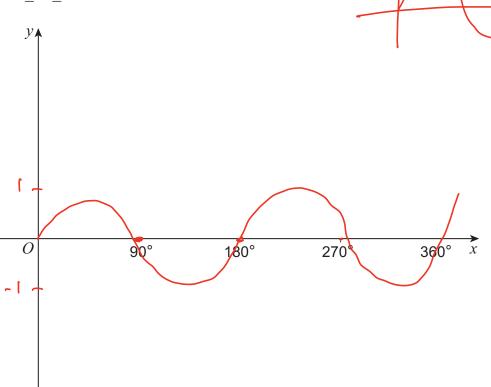
$$x = 1$$

$$x = 2$$

4 Find

$$\int \left(x^2 + x^{\frac{1}{2}}\right) \mathrm{d}x$$

[2 marks]


$\frac{2^3}{2} + \frac{2}{2} + $	
3 3	

5 (a) Sketch the graph of

for $0^{\circ} \le x \le 360^{\circ}$

[2 marks]

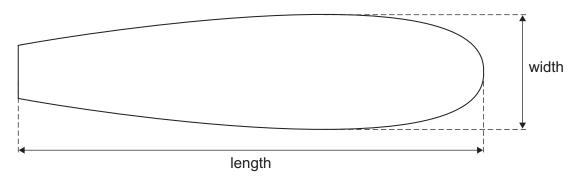
Do not write outside the

box

5 (b) The equation

$$\sin 2x = A$$

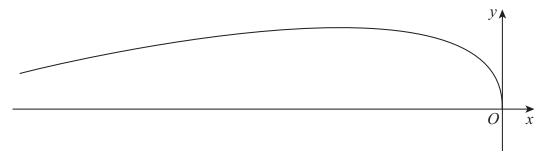
has exactly two solutions for $0^{\circ} \le x \le 360^{\circ}$


State the possible values of A.

[1 mark]

A design for a surfboard is shown in **Figure 1**.

Figure 1


The curve of the ${f top\ half}$ of the surfboard can be modelled by the parametric equations

$$x = -2t^2$$

$$y = 9t - 0.7t^2$$

for $0 \le t \le 9.5$ as shown in **Figure 2**, where x and y are measured in centimetres.

Figure 2

6 (a) Find the length of the surfboard.

[2 marks]

<u> </u>	: 9·S	<u> </u>	7.5 = -18	30.S
length of the	surfbo	21 = 18	0.5cm	
				

6 (b) (i)	Find an expression from $x = -2t^2$	for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t .
	$\mathbf{r} = -0t^2$	

$$x = -2t^2$$

[3 marks]

AL .

du ~	ay	x at	_	9-1.46	= 1.46-9
		_			
de	at	do		-111-	114

obse on obse - 4t

6 (b) (ii) Hence, show that the width of the surfboard is approximately one third of its length. **[4 marks]**

max height when ay = 8

1.114-9-0

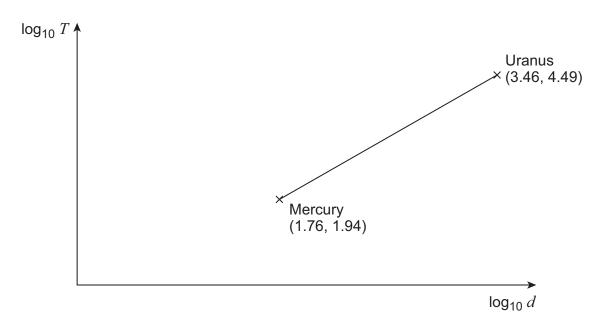
4t 1.4t=9 t

 $y = 9(9) - 0.7(9)^2 = 28.93$

wiath = 2x28.93 = 57.857

length was 180.5 cm width 57.9 cm

57.9 IS approx 1 or 180.5


180.5 - 3 = 60.1

7 A planet takes T days to complete one orbit of the Sun.

> T is known to be related to the planet's average distance d, in millions of kilometres, from the Sun.

dmillions tom

A graph of $\log_{10} T$ against $\log_{10} d$ is shown with data for Mercury and Uranus labelled.

7 (a) (i) Find the equation of the straight line in the form

$$\log_{10} T = a + b \log_{10} d$$

where a and b are constants to be found.

[3 marks]

44 : 2.55 : 1.5 y=1.5 = +C
Δ× 1.7
1.94 = 1.76(1.5)+C
-0.7 = C
•
Log T = -0.7 + 1.5 Log 10 d

7 (a) (ii) Show that

$$T = Kd^n$$

where K and n are constants to be found.

0.7

[2 marks]

7 (b) Neptune takes approximately 60 000 days to complete one orbit of the Sun.

Use your answer to **7(a)(ii)** to find an estimate for the average distance of Neptune from the Sun.

[2 marks]

Turn over for the next question

8 Water is poured into an empty cone at a constant rate of 8 cm³/s

After t seconds the depth of the water in the inverted cone is h cm, as shown in the diagram below.

When the depth of the water in the inverted cone is $h\,\mathrm{cm}$, the volume, $V\,\mathrm{cm}^3$, is given by

$$V = \frac{\pi h^3}{12}$$

8 (a) Show that when t = 3

$$\frac{\mathrm{d}V}{\mathrm{d}h} = 6\sqrt[3]{6\pi}$$

[4 marks]

In av : 8	at t seconds	V= 11h3	
<u></u>	h=h	12	

V: 24

at
$$t=3$$
 288 = h^3

 $\frac{2}{dv} = \frac{4}{4} \times \frac{288}{3} = \frac{1}{4} \times \frac{3}{82944}$ $\frac{3}{82944} = \frac{1}{4} \times \frac{3}{4} \times \frac{3}{16}$

63611

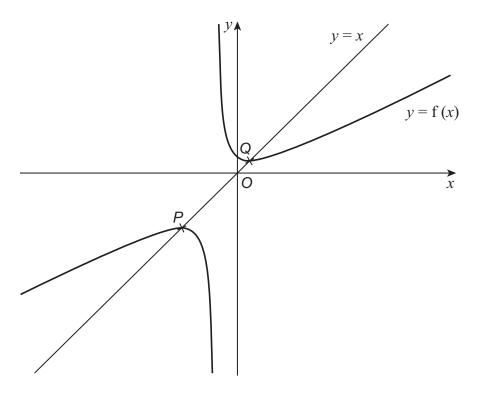
		outside box
8 (b)	Hence, find the rate at which the depth is increasing when $t=3$	
	Give your answer to three significant figures.	
	$60 \cdot 63 = 60 \cdot 63 = 60 \cdot 60 = 60 =$	
	$\frac{E=3}{dh} = \frac{gv}{6^3 16\pi}$	
	ah - ah x dv Volume is increased at at 8cm3/sec	
	<u>dv</u> = 8	
	at a second seco	
	$\frac{dh}{dt} = \frac{1}{3} \times 8 = \frac{4}{33} \times 6.501$	-1
	dt 63/6H 33/6H = 0.501cm	S

Ass	sume that a and b are integers such that
	$a^2 - 4b - 2 = 0$
Pro	ove that a is even. [2 marks]
	$9^2 = 4b + 2$
	a2 = 2(26+1) for a square number to
be	e even its root must be even
Her	nce, prove that $2b+1$ is even and explain why this is a contradiction. [3 marks]
u	fais even it must be able to be
W.	ritten as 2n
	$50(2n)^2 = 4n^2 = 2(2b+1)$
	$2n^2 = 2b+1$
	.'. 2b+1 most be ex
له	towever 200 onything +1 is an odd
nc	ember so this is a contradiction

9 (c) Explain what can be deduced about the solutions of the equation

$$a^2 - 4b - 2 = 0$$

[1 mark]


because there is a contradiction, this equation must be unsolved be where a and in one integers

Turn over for the next question

$$f(x) = \frac{x^2 + 10}{2x + 5}$$

where \boldsymbol{f} has its maximum possible domain.

The curve y = f(x) intersects the line y = x at the points P and Q as shown below.

10 (a) State the value of x which is not in the domain of f.

[1 mark]

x:-5	is not in the domain of f
2	

10 (b)	Explain how you	know that the	function f is	s manv-to-one.

[2 marks]

Because	2 or mare	values of	æ	give	the
same valu	e of y				
	•				

10 (c) (i) Show that the x-coordinates of P and Q satisfy the equation

$$f(x) = \frac{x^2 + 10}{2x + 5}$$

$$x^2 + 5x - 10 = 0$$

[2 marks]

when ac =			


10 (c) (ii) Hence, find the exact x-coordinate of P and the exact x-coordinate of Q.

[1 mark]

$$\left(\frac{x+5}{2}\right)^2 - \frac{25}{4} - \frac{40}{4} = 0$$

$$\frac{2+5}{2} = + \sqrt{65}$$
Pis most left
$$\frac{2}{2} = -\frac{2}{2}$$
So the $\frac{2}{2}$ coordinate

Turn over ▶

10 (d)	Show that <i>P</i> and <i>Q</i> are stationary points of the curve.
. • (•.)	onon that i and a disconding points of the salver

Fully justify your answer.

$$f(x) = \frac{x^2 + 10}{2x + 5}$$

$$let 0 = 2^2 + 10$$
 $V = 200 + 5$

[5 marks]

$$f'(x) = (2x+5)(2x) - [2(x^2+10)]$$

$$4x^2+100c-2x^2-20=2x^2+100c-20$$

$$(2x+5)^2 \qquad (2x+5)^2$$

Torning points when f'(x) = 0

 $2x^2 + 10x - 20 = 0$

$$x^2 + 5x - 10 = 0$$
 le $x = -5 + \sqrt{65}$ (as before)

so pand Q are sictionary ponts

10 (e) Using set notation, state the range of f.

$$f(x) = \frac{x^2 + 10}{2}$$

[2 marks]

when
$$x = -5 - 565$$
 25 + 10 65 + 65 + 40 = 65 5 5 - 325

 $\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2}$

Do not write outside the box

Section B

Answer all questions in the spaces provided.

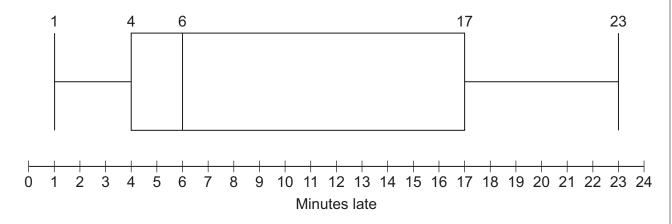
11 $X \sim N(14, 0.35)$

Find the standard deviation of X, correct to two decimal places.

Circle your answer.

[1 mark]

0.12


0.35

0.59

1.78

Jo.35: 0.5916

The box plot below shows summary data for the number of minutes late that buses arrived at a rural bus stop.

Identify which term best describes the distribution of this data.

Circle your answer. [eft stew = positively stews [1 mark]

negatively skewed normal positively skewed symmetrical

Turn over for the next question

Turn over ▶

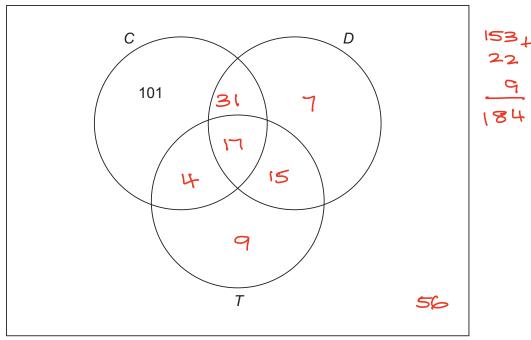
13	A reporter is writing an article on the CO_2 emissions from vehicles using the Large Data Set.
	The reporter claims that the Large Data Set shows that the $\rm CO_2$ emissions from all vehicles in the UK have declined every year from 2002 to 2016.
	Using your knowledge of the Large Data Set, give two reasons why this claim is invalid.
	[2 marks]
	Not all UK regions are included so early conclude
	anything doot all venicles
	Not all types of vehicles are noward exther

14	A customer service centre records every call they receive.							
	It is found that 30% of all calls made to this centre are complaints.							
	A sample of 20 calls is selected.							
	The number of calls in the sample which are complaints is denoted by the random variable X .							
14 (a)	State ${\bf two}$ assumptions necessary for X to be modelled by a binomial distribution. [2 marks							
_	Each cell is independent of everyother. The probability of each cell being a complaint							
_	remains constant							
14 (b)	Assume that X can be modelled by a binomial distribution.							
14 (b) (i)	Find $P(X = 1)$ [1 mark							
	X~B (20,03)							
	P(X=1) = 0.0068							
14 (b) (ii)	Find $P(X < 4)$ $0,1,2,3$							
	$P(x < 4) = P(x \leq 3)$							
	= 0.107) (4ap)							

14 (b) (iii)	Find $P(X \ge 10)$		[2 marks]
	PX>10 = 1-P(X<9)		
	: 1-0.952 <u>038</u>	10	
	: 0.04791		
14 (c)	In a random sample of 10 calls to a \it{Y} , may be modelled by a binomial d	school, the number of calls which are listribution	complaints,
		$Y \sim B(10,p)$	
	The standard deviation of Y is 1.5	0p(1-p) = 1.52	
	Calculate the possible values of p .	np-np2= 0.25	
	omenment promise confi	10p-10p2: 2.25	[3 marks]
		0= 10p2-10p+2.25	
		P = 0.6581	
		P:0.3419	
		P: 0.5419	

Turn over for the next question

15	Researchers are investigating the average time spent on social media by adults on the electoral register of a town.						
	They select every 100th adult from the electoral register for their investigation.						
15 (a)	Identify the population in their investigation.	1 mark]					
	Adolts from the electoral register						
15 (b) (i)	· · · · · · · · · · · · · · · · · · ·	1 mark]					
	Systematic sampling						
15 (b) (ii)	Describe one advantage of this sampling method.	1 mark]					
	Its convenient and cheap to collect						


- A sample of 240 households were asked which, if any, of the following animals they own as pets:
 - cats (C)
 - dogs (D)
 - tortoises (T)

The results are shown in the table below.

Types of pet	С	D	Т	C and D	C and T	D and T	C, D and T
Number of households	153	70	45	48	21	32	17

16 (a) Represent this information by fully completing the Venn diagram below.

[3 marks]

- **16 (b)** A household is chosen at random from the sample.
- **16 (b) (i)** Find the probability that the household owns a cat only.

[1 mark]

16 (b) (ii)	Find the probability that the household owns at least two of the three types of pet.	
	[2 mar	ˈks]

Plat least 2)	2	31+17+4+15	=67	
		240	240	

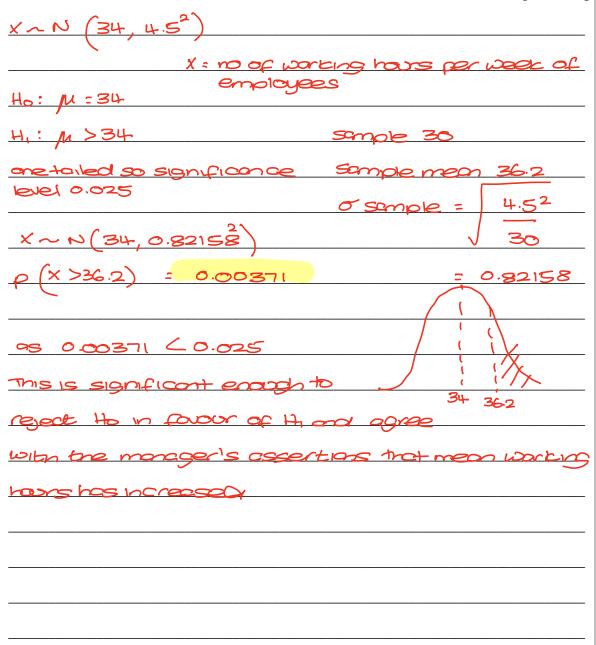
16 (b) (iii) Find the probability that the household owns a cat or a dog or both, given that the household does not own a tortoise.

[2 marks]

16 (c) Determine whether a household owning a cat and a household owning a tortoise are independent of each other.

Fully justify your answer.

[2 marks]


The number of working hours per week of employees in a company is modelled by a normal distribution with mean of 34 hours and a standard deviation of 4.5 hours.

The manager claims that the mean working hours per week of the company's employees has increased.

A random sample of 30 employees in the company was found to have mean working hours per week of 36.2 hours.

Carry out a hypothesis test at the 2.5% significance level to investigate the manager's claim.

[6 marks]

18	In a particular year, the height of a male athlete at the Summer Olympics has a mean 1.78 metres and standard deviation 0.23 metres.
	The heights of 95% of male athletes are between 1.33 metres and 2.22 metres.
18 (a)	Comment on whether a normal distribution may be suitable to model the height of a male athlete at the Summer Olympics in this particular year. [3 marks]
	o: 0.23 For it 2 be a normal disbribution 95%
	of the population should be 120 from the mean and its most be continuous data,
	1.78 - 2(0.28): 1.32 so as this is reasonably
	dose a normal distribution, may be suitable
18 (b)	You may assume that the height of a male athlete at the Summer Olympics may be modelled by a normal distribution with mean 1.78 metres and standard deviation 0.23 metres.
18 (b) (i)	Find the probability that the height of a randomly selected male athlete is 1.82 metres. [1 mark]
	p(exoddy 1.82 metres) = 0
	·
	·
18 (b) (ii)	Find the probability that the height of a randomly selected male athlete is between 1.70 metres and 1.90 metres. [1 mark]
	P (170< x<190) = 0.3350886
	£ 0.3351

18 (b) (iii) Two male athletes are chosen at random.

Calculate the probability that **both** of their heights are between 1.70 metres and 1.90 metres.

[1 mark]

18 (c) The summarised data for the heights, h metres, of a random sample of 40 male athletes at the Winter Olympics is given below.

$$\sum h = 69.2$$
 $\sum (h - \bar{h})^2 = 2.81$

Use this data to calculate estimates of the mean and standard deviation of the heights of male athletes at the Winter Olympics.

[3 marks]

ı						
I	2.81	=	0.2650	(4an)		
١						
	40					

Using your answers from **part (c)**, compare the heights of male athletes at the Summer Olympics and male athletes at the Winter Olympics.

| [2 marks] | 69.2 | 69

sommer elympics atheleles tend to be toller and have a

19 A bank runs a campaign to promote Internet banking accounts to their customers.

Before the campaign, 42% of their customers had an Internet banking account.

One week after the campaign started, 35 customers were surveyed at random and 18 of them were found to have registered for an Internet banking account.

Using a binomial distribution, carry out a hypothesis test at the 10% significance level to investigate the claim that, since the campaign, there has been an increase in the proportion of customers registered for an Internet banking account.

[6 marks]

X-B(35, 0.42)	
	ILT IS
Ho: P = 0.42	X = no of people in a sample of
H; P>0.42	35 who have an internet banking
	cocont
PX>18	
: 1- P(X < 17))
: 1-0.831861	5
= 0-1686	0.1686 70.10
so there is insuf	Eficient evidence to reject the
in former of 4,	There is insofficient audence
to suggest that	there has been on narease in
the nomber of in	enet bonting customers

END OF QUESTIONS

There are no questions printed on this page

Do not write outside the box

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

