Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Centre Number Candidate Number		
Pearson Edexcel Level 3 GCE		
	Paper reference	8MA0/22
Mathematics Advanced Subsidiary PAPER 22: Mechanics		
You must have: Mathematical Formulae and Statistical Tables (Green), calculator		

Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, wherever a value of g is required, take $g = 9.8 \text{ m s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 30. There are 4 questions.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. The point A is 1.8 m vertically above horizontal ground.

At time t = 0, a small stone is projected vertically upwards with speed $U \text{m s}^{-1}$ from the point A.

At time t = T seconds, the stone hits the ground.

The speed of the stone as it hits the ground is $10\,\mbox{m}\,\mbox{s}^{-1}$

In an initial model of the motion of the stone as it moves from A to where it hits the ground

- the stone is modelled as a particle moving freely under gravity
- the acceleration due to gravity is modelled as having magnitude 10 m s⁻²

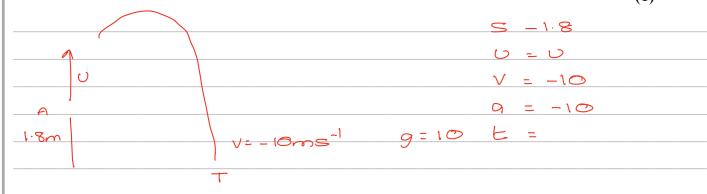
Using the model,

(a) find the value of U,

(3)

(b) find the value of *T*.

(2)


(c) Suggest one refinement, apart from including air resistance, that would make the model more realistic.

(1)

In reality the stone will not move freely under gravity and will be subject to air resistance.

(d) Explain how this would affect your answer to part (a).

(1)

$$V^2 = U^2 + 295$$

c) a more accurate figure for gravity

d) as the stone is appealed by air resistance U woold

have to be greater

2. A train travels along a straight horizontal track from station *P* to station *Q*.

In a model of the motion of the train, at time t = 0 the train starts from rest at P, and moves with constant acceleration until it reaches its maximum speed of $25 \,\mathrm{m\,s^{-1}}$

The train then travels at this constant speed of $25 \,\mathrm{m\,s^{-1}}$ before finally moving with constant deceleration until it comes to rest at Q.

The time spent decelerating is four times the time spent accelerating.

The journey from P to Q takes 700 s.

Using the model,

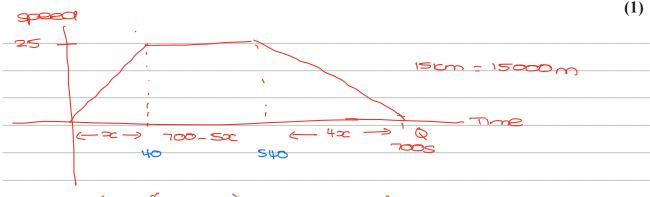
(a) sketch a speed-time graph for the motion of the train between the two stations P and Q. (1)

The distance between the two stations is 15 km.

Using the model,

(b) show that the time spent accelerating by the train is $40\,\mathrm{s}$,

(3)


(c) find the acceleration, in $m s^{-2}$, of the train,

(1)

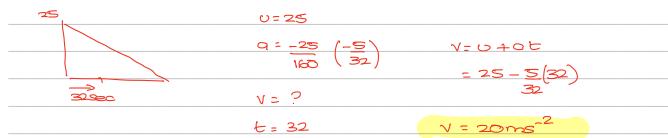
(d) find the speed of the train $572 \,\mathrm{s}$ after leaving P.

(2)

(e) State one limitation of the model which could affect your answers to parts (b) and (c).

$$\left(\frac{x}{2} \times 25\right) + \left(700 - 5x\right) \times 25 + \left(\frac{4x}{2} \times 25\right) = 15000$$

$$\frac{-5x + 700 = 600}{2}$$
 $\frac{5x = 100}{2}$ $\frac{3c = 40}{2}$ the accelerating


c) acceleration =
$$\frac{\Delta Y}{\Delta x} = \frac{25}{40} = \frac{5}{8} \text{ ms}^{-2}$$

6

Question 2 continued

a) The train is unlikely to move with constant acceleration or constant speed

3. A fixed point *O* lies on a straight line.

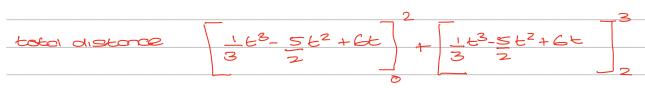
A particle *P* moves along the straight line.

At time t seconds, $t \ge 0$, the distance, s metres, of P from O is given by

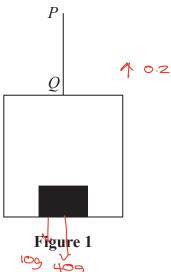
$$s = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$

(a) Find the acceleration of P at each of the times when P is at instantaneous rest.

(6)


(b) Find the total distance travelled by P in the interval $0 \le t \le 4$

(3)


vend

oft² at t=2 occeleration = $-1ms^{-2}$ t=3 acceleration = $1ms^{-2}$

$$\begin{bmatrix}
8 - 10 + 12 \\
3
\end{bmatrix} + \begin{bmatrix}
9 - 45 + 18 \\
2
\end{bmatrix} - \frac{14}{3}
\end{bmatrix} + \begin{bmatrix}
64 - 40 + 24 \\
3
\end{bmatrix} - \frac{9}{2}$$

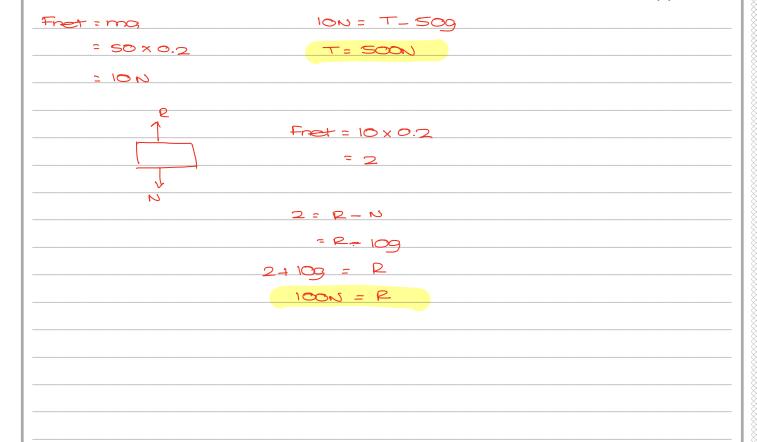
4.

A vertical rope PQ has its end Q attached to the top of a small lift cage.

The lift cage has mass 40 kg and carries a block of mass 10 kg, as shown in Figure 1.

The lift cage is raised vertically by moving the end P of the rope vertically upwards with constant acceleration $0.2\,\mathrm{m\,s^{-2}}$

The rope is modelled as being light and inextensible and air resistance is ignored.


Using the model,

(a) find the tension in the rope PQ

(3)

(b) find the magnitude of the force exerted on the block by the lift cage.

(3)

